본문 바로가기

분류 전체보기179

[Object Detection] Tensorflow Hub 활용하기 (inception resnet V2) Tensorflow Hub 에 있는 object detection model을 어떻게 사용하는지 알아보기 위해 간단한 구현을 하려고 합니다. 해당 코드는 CoLab에서도 확인 가능합니다. - Tensorflow Hub에서 object detection model 찾아보기 - 나의 workspace에 models load하기 - Inference를 위해 image를 preprocess하기 - models에 inference하고 output을 inspect하기 Imports import tensorflow as tf import tensorflow_hub as hub from PIL import Image from PIL import ImageOps import tempfile from six.moves.u.. 2021. 3. 31.
[CNN] Convolution으로 Accuracy 높이기 (Fashion MNIST, TensorFlow) Fashion MNIST는 70,000개의 28x28의 greyscale 이미지로 구성이 되어 있습니다. Fashion MNIST Dataset를 활용해 Convolution가 없을 때와 있을 때를 비교하고 모델에 살짝씩 변화를 주며 파라미터, 레이어가 어떤 역할을 하는지 알아봤습니다. Fashion MNIST Dataset를 활용해 Convolution으로 Accuracy 높이기 먼저 Convolution이 없는 DNN(Deep Neural Network)로 accuracy를 확인해봅니다. import tensorflow as tf mnist = tf.keras.datasets.fashion_mnist (training_images, training_labels), (test_images, test_l.. 2021. 3. 28.
[Coursera 수료 ✅ ] DeepLearning.AI TensorFlow Developer 모델 구현 과정에서 실력의 빈 틈이 너무 많은 것 같아 Coursera에서 제공하는 DeepLearning.AI TensorFlow Developer 과정을 수료했습니다. 총 4개의 코스가 있는데 이미지 분야만 공부하다가 NLP나 Sequence 같은 분야도 접하게 되어 흥미로웠습니다 :) 2021. 3. 25.
[논문 리뷰] StyleGAN: A Style-Based Generator Architecture for GANs 이번에 소개해 드릴 논문은 A Style-Based Generator Architecture for Generative Adversarial Networks으로 StyleGAN으로 자연스러운 고해상도 이미지를 만들면서 많이 알려지게 된 논문입니다. 해당 논문은 NVDIA 팀이 CVPR 2019에서 발표한 논문입니다. 이 글은 나동빈 님의 유튜브 영상과 루닛의 블로그 글을 참고하여 작성했습니다. Introduction 최근 GAN을 기반으로 한 이미지 합성 기술은 PGGAN 등을 포함하여 지속적으로 발전하고 있습니다. 그러나 Generator를 통한 이미지 합성 과정은 여전히 block box로 여겨지며, 이로 인해 합성되는 이미지의 attribute (성별, 연령, 헤어스타일 등) 을 조절하기가 매우 어.. 2021. 3. 25.
[논문 리뷰] Multiple-Clothing Detection and Fashion Landmark Estimation Using a Single-Stage Detector 안녕하세요. 이번에 리뷰할 논문은 중앙대팀에서 IEEE Access 2021에 publish한 Multiple-Clothing Detection and Fashion Landmark Estimation Using a Single-Stage Detector입니다. IDENX INTRODUCTION PROPOSED METHOD EXPERIMENTS RESULTS CONCLUSION INTRODUCTION Fashion dataset에 대한 기존 model들을 High computational requirements이 필요했습니다. 그러나 본 논문에서 제안 제안한 모델은 아래와 같은 contribution을 가지고 있습니다. Contribution (1) low-power devices에 적합하도록 accur.. 2021. 3. 13.
[ML 기초] 배치(batch)와 에포크(epoch) 차이 Batch size: 전체 트레이닝 데이터 셋을 여러 작은 그룹을 나누었을 때 batch size는 하나의 소그룹에 속하는 데이터 수 Epoch: 전체 트레이닝 셋이 신경망을 통과한 횟수 Iteration: iteration은 1 epoch를 마치는데 필요한 미니배치 갯수 2021. 3. 11.
용어 구분 - 인공지능, 기계학습, 데이터과학, 빅데이터, 데이터마이닝, 에이전트 1. 인공지능 의사결정, 판단, 추론, 학습, 예측 등 인간의 지능적인 행위를 컴퓨팅 모델로 만드는 것이다. 기계학습보다는 포괄적인 의미이다. 2. 기계학습 인공 지능의 한 부분으로 인간의 학습, 예측, 판단 등의 지능적 행위를 컴퓨팅 모델로 수행하는 것이다. 3. 데이터과학 정형, 비정형 형태를 포함한 다양한 데이터로부터 지식과 인사이트를 추출하는데 과학적 방법론, 프로세스, 알고리즘, 시스템을 동원하는 융합분야이다. 데이터과학은 데이터마이닝보다 다학제적(interdisciplinary)이고 전방위적으로 비지니스, 기술, 오퍼레이션등 거의 모든 분야에 연결된 분야라고 볼수 있다. 4. 빅데이터 기존의 시스템으로는 처리하기 어려운 엄청난 양의 데이터를 말한다. 크기(Volume), 속도(Velocity).. 2021. 3. 9.
[논문 리뷰] EfficientDet: Scalable and Efficient Object Detection Review 안녕하세요! 오늘은 랩미팅 중 교수님께서 추천해주신 모델인 EfficientDet 을 리뷰해볼려고 합니다. Google Brain팀에서 publish한 논문이며, Code도 사용할 수 있도록 GitHub에 올려있습니다. Introduction EfficientDet은 이름만큼이나 현재 DataseObject Detection on COCO minival dataset에서 Extra Traning data 없이 성능 측정한 모델 중 1위를 차지할 정도로 적은 연산량(FLOPS)과 정확도를 모두 잡은 Efficient한 Network인데요. 위 single-model single-scale로 진행한 성능 비교 실험에서도 1위 mAP를 달성하며 SOTA 를 갱신했다고 합니다. Challenges Challen.. 2021. 3. 6.
[논문 읽기 TIP] ML분야에서 Albation Study란? EfficientDet 논문을 읽다가 Albation Study라는 섹션이 있어 무엇을 뜻하는지 알아보았습니다. Albation Study란? Dataset의 feature나 model components를 제거함으로써 성능에 미치는 영향을 알아보기 위한 실험 Albation Study는 의학, 심리학, 신경과학에서 처음 사용되었지만 Machine Learning 분야에서는 machine learning system의 building blocks을 제거해서 전체 성능에 미치는 효과에 대한 insight를 얻기 위한 과학적 실험이라고합니다. Dataset의 feature나 model components을 building blocks이라고 하는데, 더보기 Sources https://www.quora.com.. 2021. 3. 5.
[Object Detection] 1-Stage Detector와 2-Stage Detector 차이 Deepfashion2 dataset과 EfficientDet을 사용한 Multiple-Clothing Detection and Fashion Landmark Estimation Using a Single-Stage Detector 논문을 읽다가 1-Stage Detector로 하나의 single GPU로 빠른 fast inference time(42 ms)을 도달했다고 하여 1-Stage Detector와 2-Stage Detector의 차이를 다른 분의 블로그 포스팅을 참고하여 이번에 정리하고 넘어가려고 합니다. 1-Stage Detector와 2-Stage Detector milestone 2-Stage Detector Regional Proposal과 Classification이 순차적으로 이루어.. 2021. 3. 2.